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Numerical solutions have been obtained for steady viscous flow past a finite flat plate 
attached normally to an infinite wall at  Reynolds numbers Re up to 2800. Separately, 
Levi-Civita’s method has been used to obtain the flow solution based on the free- 
streamline theory. Apart from the case of uniform flow past an isolated obstacle, the 
present flow problem appeared to exhibit the validity of the free-streamline model 
for the global structure of the flow field. The position of the separation point could 
be predicted by two terms of the asymptotic solution based on the Sychev-Smith 
model within 0.6% error for the range 100 < Re < 2800. 

1. Introduction 
The nature of the boundary-layer separation at high Reynolds numbers is a 

problem of the most fundamental interest in fluid mechanics. It concerns not only 
the development of the boundary layer upstream but also the structures of the wake 
downstream and the potential zone elsewhere. For a bluff body submerged in a 
uniform stream, for instance, the shape of the wake is generally unknown a priori, 
and so the position of the separation point as well as the characteristics of the 
boundary layer upstream must be determined as a part of the problem. The boundary 
layer, the wake and the potential zone thus interact with each other rendering the 
analysis difficult and complicated. 

In each of the variety of wake models which have been proposed by many 
theoreticians, at  least one of the three regions was ignored to simplify the problem. 
Kirchhoff (1869) ignored the boundary layer, and assumed that the fluid within the 
eddy of the wake is totally motionless and the particle velocity on the free streamline 
is equal to that of the uniform flow far upstream of the body. The free-streamline 
theory later developed by a number of investigators (see e.g. Wu 1972) results in a 
finite drag coefficient and an open wake. Although the drag may or may not be finite 
(see Batchelor 1956b), at asymptotically large Reynolds numbers an open wake is 
not desirable since i t  does not represent the true picture of nature at  large but finite 
Reynolds numbers. A physically and mathematically detailed argument concerning 
this matter is given in Batchelor (19564. Batchelor’s proposal ( 1 9 5 6 ~ )  then 
appeared in a quite different light. He also ignored the boundary layer, but assumed 
that the wake is closed and proved that within the closed wake, vorticity is constant. 
Thus Batchelor’s model is composed of two regions. One of the important properties 
of this model is the zero drag coefficient. 

The above two basic models are simple but incomplete since the viscous effects are 
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ignored and as a result there is at least one unknown constant in the calculation. 
Smith’s (1985, 1986) model includes finite drag and closed wake. (The corresponding 
basic-flow model was studied earlier by Sadovskii 1971 and its relevance to circular- 
cylinder-flow was implied numerically by Fornberg 1986.) Smith’s model has two 
main regions; a large-scale flow of O(Re) and a body-scale flow of O(1).  The former 
comprises symmetric eddies, each with a uniform level of vorticity, and the potential 
zone elsewhere. Along the dividing lines are viscous shear layers. In the body-scale 
flow, the two main regions are the open wake and the potential zone outside. There 
is a boundary layer adjacent to the body and a shear layer between the two inviscid 
regions. In the region near the separation point, triple-deck iteration must be 
applied. The open wake and the shear layer are matched with the corresponding 
small regions in the large-scale flow. Thus Smith’s model appears to be more 
complete than any previous one. But it still requires further resolution. For instance, 
Peregrine (1985) presented a detailed account of the flow mechanism near the eddy- 
closure region, and he suggested an exact solution of the Navier-Stokes equations for 
that  region, which Smith did not consider fully. In  addition, computation of Smith’s 
model for the whole flow field is formidable. 

We should seek a problem not complicated in modelling but still preserving the 
fundamental properties of separated flow from a smooth surface. The complexity in 
Smith’s model primarily rests on the fact that  the large eddies and the potential 
region must ‘ interact ’ in a self-consistent manner. The free-streamline model on the 
other hand is free of interaction, and moreover it is strongly recommended as the 
right local model for self-consistent boundary-layer separation (see Sychev 1972 and 
Smith 1977). The objection to Kirchhoffs model is the wake’s openness; the free 
streamline reattaching downstream is also possible, as studied by Southwell & Vaisey 
(1946), but it persistently contains an infinite radius of curvature a t  the breakaway 
point and is rejected on triple-deck grounds. 

We consider in this study flow over a finite flat plate attached normally to an 
infinite wall as shown in figure 1. The problem is two-dimensional, and the whole flow 
field is assumed to be steady, incompressible and laminar. This geometry gives rise 
to stagnation point flow. Owing to the corner singularity, the boundary-layer flow 
will separate ahead the corner. But intuitively we can conjecture that the size of the 
eddy remains a t  most of the order of the plate length because of the strongly 
favourable pressure gradient downstream of the wall. Thus the wake will not be open 
and its size will be finite even at infinite Reynolds numbers. Furthermore the 
boundaries are geometrically very simple, which makes it easier to find the inviscid- 
flow solution. In  summary, the present model problem has simple boundaries but 
retains a closed and finite wake, which motivated the authors to study it. 

Chernyshenko (1984) considered the same problem and obtained the inviscid 
solutions for the potential zone and the wake. One of the key assumptions in his 
study is that the wake is composed of one eddy with a constant vorticity. The 
validity of the constant vorticity is impossible (Batchelor’s theorem) but not the 
single-eddy assumption. Leal (1973) also studied a very similar problem. The only 
difference lies in that the infinite wall of the present problem is replaced in his by a 
symmetry line along which the vorticity is zero. He predicted that the ultimate 
separation position a t  infinite Reynolds number would be a finite distance 
downstream of the leading edge. It should be mentioned in addition that when the 
blowing velocity is O( 1) the plate-injection problem has a very similar nature as far 
as the separation region is concerned. For instance Smith & Stewartson (1973) 
predicted that the separation point would move upstream to the leading edge 
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FIGURE 1. A finite flat plate attached normally to an infinite wall subject to 
stagnation-point flow. 

asymptotically at large Reynolds numbers. At the stage of final corrections to this 
paper, the authors were introduced to the work of Moore, Saffman & Tanveer (1988), 
who obtained inviscid solutions for this problem with the single-eddy model. They 
added to the work of Chernyshenko (1984) by allowing for a range of eddy vorticities. 
They also obtained a solution for zero vorticity which we independently derive in 
a different form in 53.1. 

The important questions to be pursued in this study are: first, what will be the 
structure of the recirculating flow ; second, what will be the inviscid solution valid in 
the potential zone ; and finally, how may triple-deck theory be applied to predict the 
separation position ‘1 The first and second questions are associated with Cherny- 
shenko’s study and the third with Leal’s and that of Smith & Stewartson (1973). 

2. Formulation of the problem 
We consider a finite flat plate attached normally to an infinite wall as shown in 

figure 1.  The problem is two-dimensional and the whole flow field is assumed to be 
steady, incompressible and laminar. The length of the plate, without loss of 
generality, can be taken 1, and the stream function in the potential region far from 
the corner can be set asymptotically as 

II. N -2xy. ( 1 )  
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The Navier-Stokes equations are then formulated in terms of $ 
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where V2 = (a2//ax2)+(a2/ay2) and the Reynolds number Re is l/v. Symmetry is 
assumed and consideration of the quarter-plane y >  0, x G O  is sufficient. The 
boundary conditions are 

$(X,O) = $(O,Y) = 0, ( 3 4  

and +-+-2xy as (x2+y2)~+co. (3e) 

The full equation (2) will be solved numerically by the method shown in $4. 
Our concern in this study is the structure of the flow field at high Re. For the limit 

Re+ co, (2) reduces to 
V2$ = 0 (4) 

in the assumption of irrotationality far upstream. In $3 we shall adopt the free- 
streamline model to obtain the solution of (4) applicable to the potential region. 

3. Free-streamline solution and the separation position 
As Re tends to infinity, the viscous effect will become confined to narrow regions. 

These narrow regions include the boundary layer developed upstream of the 
separation point, the shear layer between the potential and the recirculating regions, 
and perhaps any shear layers that exist within the recirculating region. The existence 
of inner layers is only conjectured because the present calculation for the 
Navier-Stokes equations revealed the possibility of multiple eddies inside the 
recirculating region. We assume a t  this time however that the detailed flow 
mechanism in that region is negligible in an asymptotic sense, a basic principle of the 
free-streamline theory. Thus our model comprises two regions, the potential one and 
the motionless one divided by the free streamline. 

In  this section we shall first find an inviscid solution for the potential region using 
classical complex-function theory, and then we shall derive an asymptotic formula 
representing the separation position via a reconciliation between the inviscid 
solution and the triple-deck requirement. 

3.1. Inviscid solution 
Levi-Civita’s method (see e.g. Gurevich 1966) will be used to obtain the solution 
of this problem. For the complex potential W = $+i$ the complex velocity is 

dW 
- = Vexp (-iO), dz 
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FIQURE 2. Physical and transform planes: (a) Z-plane, (b )  W-plane, ( c )  w-plane, and (d) [-plane. 

where 2 = x+iy is the complex coordinate, V is the absolute velocity, and 6 is the 
angle that the velocity vector makes with the x-axis. In the usual manner we define 
w as 

w = i l n  -- =6+iln - , G03 (9 
where V, is the velocity on the free streamline, a t  present unknown. Then in the 
w-plane, the boundary constitutes a semi-infinite strip (figure 2a, c). The mapping 
w f-, W is established by the Schwarz-Christoffel transformation : 

where $o is the value of W a t  point A (figure 2 b ) .  The upper half of the W-plane 
is next mapped to the interior of the quarter-circle in the [-plane (figure 2 4  by 

upon which (6) reduces to 

w =-iln(-i[). 

Thus from (5 ) ,  (7) and (8) we obtain 
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To attain W +  -Z2 for 121 + 03 we must require 
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+o = vz,. (10) 

xo = -ZV 3 0 '  (11) 

Evaluating 2 a t  [ = i from ( 9 )  gives xo, the x-coordinate of point A (figure 2 a ) :  

Note that as xo+- 1 (breakaway occurring a t  C,  the leading edge), Vo+$.  

3.2. Asymptotic prediction for the position of the separation point 

Sychev (1972) stated in his translated article that, 'The theory of jet flows of an ideal 
liquid with free streamline contains all the necessary information concerning the 
local behaviour of the potential flow outside the region of the boundary layer close 
to the separation point'. Smith (1982) in his review article also showed that local 
shape of the free streamline satisfies the requirement of the triple-deck structure for 
the mass separation. In  Smith's previous paper (Smith 1977), the shape of the 
displacement far downstream for self-consistent boundary-layer separation must be 
in terms of the local coordinates (z, y): 

(12)  
1 9  

g = +hea(z-  3 XOP, - 

in which h is the skin-friction coefficient to  be supplied by the boundary-layer 
calculation for the upstream region, E = Re;: (Re, is Reynolds number based on 
the local lengthscale and reference velocity), zo denotes the %-coordinate a t  the 
breakaway point, and a = 0.44 is a constant required for the existence of the 
solution. We note that in (12)  E and h are dependent upon the choice of the local 
coordinate system (z, y). 

We next find the asymptotic shape of the free streamline near the breakaway point 
A for the present problem. We set 6 = exp [i((~+$)] so that as the point A is 
approached (T tends to zero. Then ( 9 )  expands like 

2 = (xo+Vo',(r2+ ...)+ i($V0703+ ...). 

y = y& - so); 

(13)  

Thus for small t~ the shape of the free streamline is represented to leading order by 

(14) 

where s = 1 + x and so = 1 + xo. We choose so (the distance of the breakaway point 
from the leading edge) as the local reference length; then z0 = 1 in (12) .  We also 
choose i (the value of Vo when the breakaway occurs at the leading edge) as the local 
reference velocity ; then Re, = (3/2u)  so and h = 0.332 (the skin-friction coefficient of 
the Blasius flow a t  unit distance from the leading edge) are obtained. Recalling that 
Re = 1 / u  (the Reynolds number used in the Navier-Stokes equations), we find 
Re, = $s,,Re, E = ($soRe)-Q. For the function (14)  to  be matched with (12) ,  (s,y) must 
be scaled by so so that s = so z, y = so fj upon which (14) becomes 

(15) 
y = "-'( - 3 1  

O e  x-1psf). 

so = ($)th2a?Re-t = 0.035Re-t. 

Equating (15)  and (12)  with E represented by so and Re yields 

(16)  

This formula determines the breakaway point, the corresponding free streamline for 
which represents the displacement far downstream that guarantees self-consistent 
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separation with given Re. Now (s,-so), the distance between the breakaway point 
and the separation point, is of order Re;s the triple-deck scale ; in terms of Re it is 

s, - so = O(Re-)). 

Thus the order of (s,-so) is lower than.that of so, which means that (16) also serves 
to predict the separation position for Re+ co to leading order. 

However, for the range of Re used in the computation of the full NavierStokes 
equations in $4, so calculated by (16) turned out to be much smaller than s, obtained 
by the numerics. Thus for practical purposes we add (17) to (16) : 

(18) s, = 0.035Re-a + C Re-; 

where C is to be determined with the aid of the numerical results. 
It should be mentioned here that terms between O(Re-a) and O(Re-i) could be 

inserted in (18) depending on the local flow mechanism near the separation point. 
We, however, have not looked into the higher-order flow mechanism, but simply 
found that, in fittin the numerical results of the Navier-Stokes equations, Re-i was 
far better than Re-n (lower than Re-;) or Re-6 (higher than Red).  i! 

4. Numerical solution method for the Navier-Stokes equations 
Basically the numerical algorithm used in the present study is same as that 

developed by Fornberg (1980, 1986). A precise description of the method will not be 
repeated here : only its properties that are peculiar to this problem will be described. 
The centred-difference method is employed in approximating all the derivatives in 
the governing equations, which guarantees the second-order accuracy. There is only 
one dependent variable, $, in the equations so that instabilities which may arise 
owing to introduction of the artificial time in the stream-function-vorticity system 
should not spoil the iteration process a t  high Reynolds numbers (Fornberg 1980). 
The nonlinear convection terms are linearized by Newton’s method to assure the 
quadratic convergence. At the boundary between the inviscid zone and the 
calculation domain, a scheme of interaction (equation (23)) between the two regions 
is used to reduce the effect of the domain’s finiteness. 

To choose a coordinate system suitable for the numerics, we must take the local 
nature of the flow field into account. The three regions to be considered in this 
problem are the leading edge, the region far downstream, and the corner. 

To incorporate the features of the first two regions, we introduce the conformal 
mapping 

p2 = 1 - 2 2 ,  (19) 

where p = E+ i7 is associated with the calculation domain. It is easy to show that the 
system of coordinate (6, 7) is optimal (Kaplun 1954) for the two regions. Although 
an important disadvantage of this mapping is that the Jacobian tends to zero as the 
corner is approached, it has some advantages : the boundary conditions on the solid 
wall are simply represented, and the upper boundary (at 7 = 7,) follows well the 
equivorticity lines which result from the economic grid system. The grid system 
generated by the mapping (19) is shown in figure 3. 

We then replace the stream function $ by Y perturbed from the asymptotic 
(7 + co ) solution of Hiemenz flow and defined by 

I f i  FLJI 214 



476 Y .  K .  Suh and C .  8. Liu 

Y 

FIGURE 

0 0.2 0.4 0.6 0.8 1.0 
1 +x 

3. A rectangular grid in the p-plane shown in the Z-plane. 

where 2 . 5 ~ ~  represents the displacement thickness of the Hiemenz flow. Explanation 
for this change will be given later when the boundary conditions are considered. 

With (19) and (20 ) .  the governing equation ( 2 )  is written as 

2 w  2w 
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where the Jacobian M is given by M = ]dp/dZI2. Formal application of Newton's 
method to (21) yields the following linearized equation: 

A Y  = BY, (22) 
where Y is a known function, and A and B are linear operators, coefficients of which 
are composed ofM and derivatives ofM and Y. Suh (1986) contains detailed formulae 
for A and B. 

The mathematical domain to be considered is a quarter-plane (0 < [, 0 < q )  which 
is truncated a t  [ = 6, and 7 = qm for the computational domain Then we consider 
boundary conditions in terms of $ or Y depending on convenience. Along the axis 
of symmetry([ = 0) ,  II. = V2$ = 0 and at  the surface of the plate and wall (q  = 0) ,  
@ = a@/aq = 0. At the downstream edge ( E  = Em). a2@/a[' = 0 and (1/& (a2@/8q2)  is a 
function of 7 ; these conditions are based on the boundary-layer solution for Hiemenz 
flow. At the top boundary (7 = 7,) one condition is V2$ = 0. In choosing the other 
one at this boundary, care must be taken. Fornberg (1980) discussed in detail the 
effects of various types of conditions on the solution. The most important feature in 
the conditions he used in calculating steady flow over a circular cylinder (Fornberg 
1986) and that over a sphere (Fornberg 1988) is that the 'infinite' nature of the 
actual domain can influence the finite domain of computation so that eddies in the 
wake may develop as freely as possible. This choice seems to be crucial in his studies 
since the width of the eddy for each obstacle increased by the same order as its length 
as Reynolds number increases, when it is high. Thus it is natural to adopt Fornberg's 
idea in this study since we have as yet no information on the eddy's properties. What 
happens in the computational domain disturbs the inviscid zone (q  > qm) where the 
governing equation is V 2 Y  = 0 with the boundary condition Y = Y'(v(5, rm) at 7 = qm. 
Solution of this problem then gives Y([,qm+Aq); 

This is in turn used in constructing the finite-difference formula for the grid points 
near q = 7,. 

To evaluate this integral we need Y([ ,  ym) for [ > [,. First we note from (20) that 
Y([,  qm) tends to zero as [+ CO. Consequently i t  will suffice to assign Y(v(5, qm) = 
Y([,,qm) for v(5 > 6,; this explains the reason for (20). 

The centred-difference method was applied to obtain the discretized equation for 
(22). Six unknowns are associated with resolving the right-hand side of (23) ; they are 

qm). Accordingly the discretized equations for I x  J grid points give a coefficient 
matrix similar to the block penta-diagonal as shown in figure 4 where the unknown 
column matrix is composed of vectors $i = ( Yj, 2, Yi, . . . , Yt, J)T (i = 2,3, . . . ,I).  Each 
block is of size (I- 1) x ( J -  1)  and diagonalized form. Gaussian elimination was 
employed to eliminate the block elements below the diagonal. During both this 
elimination process and the back substitution process, LU-decomposition with 
partial pivot was used in inverting the block element. 

y(5-2A5, Vm), y(!i-AE, q m ) ,  y(E> qm),  Y(f;+At,qrn), Y ' ( f + W ,  7m)i and y ( 5 m ,  

The sequence of computation is as follows: 
(i) Initialize Yj,j. (ii) Generate the coefficient matrix and the load vector. (iii) Solve 

the matrix for q5t. (iv) Test for convergence (criterion; 

18-2 
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t----- (1- 1) x ( J -  1) -1 
FIQURE 4. Structure of the linear system generated by applying Newton’s method to the 

Navier-Stokes equations. 

should be less than 
satisfied. 

(v) Repeat (ii) to (iv) until the convergence criterion is 

5.  Results and discussions 
On the basis of several test runs, trn = 2.5, vrn = 6/(2 x 100)4,1= 101, and J = 41 

are selected for optimal values. Selection of qrn is on the basis that this value is just 
enough to contain the boundary layer of Hiemenz flow at Re = 100, the starting Re 
in the present calculation, and it is also enough to cover the recirculating region even 
when Re tends to infinity (based on the result of $3). Starting from 100, Re was 
increased carefully (the solution a t  each Re was used as the initial value a t  the next 
higher Re, except for Re = 100 a t  which the Hiemenz solution was utilized) in such 
a way that the iteration process for a given Re converges in a few cycles; the 
increments of Re were 100 up to Re = 800,200 up to Re = 1600, and 400 up to Re = 
2800. Too large an increase in Re raised the convergence problem. For instance the 
jump 200+400 in Re failed to give a converged solution. We also found that 
although up to Re = 5000 there was no problem in convergence or stability, for 
Re 2 2800 oscillations in vorticity distributions occurred, specifically downstream of 
the recirculating region (figure 6e).  Such oscillations are without doubt due to the 
coarse meshes for the given Re. Results a t  Re = 2800 are, however, used in the 
following analysis assuming that the regions of interest are still safe. 

Computation was conducted in CYBER 730 with 14-digit precision. CPU time 
consumed for each Newton iteration was approximately 10 minutes. 
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FIQURE 5.  Streamlines for (a )  Re = 100, ( b )  200, (c )  400, (d) 800, and ( e )  2800. 
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Frau~E 6. Equivorticity lines for (a )  Re = 100, ( b )  200, ( c )  400, ( d )  800, and ( e )  2800. 
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5.1. The structure of recirculated $ow 
Figure 5 shows the streamlines and figure 6 the equivorticity lines a t  Re = 100, 
200,400,800, and 2800. First we note that secondary eddies appear at Re higher than 
800: in fact the se,condary eddy began to emerge at Re = 1000. We can find similar 
features in the flow around bottom corners in the lid-driven-cavity problem (see 
Ghia, Ghia & Shin 1982 and Gresho et al. 1984). Regarding the development of 
eddies near the corner we draw on the discussion by Burggraf (1966). (Our discussion 
in the following is only tentative since the lid-driven-cavity problem and ours cannot 
be directly compared.) He showed that the primary (' second ' in his notation) eddy 
that occurred in a bottom corner of the lid-driven cavity could be described by the 
Stokes model based on the analysis of Moffatt (1964) (Burggraf pointed out that the 
effective Reynolds number characteristic of the primary eddy was only about 1.6 
even though the global value is 400). On the other hand, following Moffatt (1964) the 
corner intrinsically contains locally an infinite sequence of eddies (higher resolution 
of the grid system might have shown more eddies in the present calculation), and 
owing to the similarity nature each eddy would recede from the singular point (the 
corner) as the intensity of the disturbance far from the corner increases; in the 
present problem an increase of the disturbance intensity is associated with an 
increase of Re. It is obvious that in the region sufficiently close to the corner the 
viscous effect is dominant (owing to the low effective Reynolds numbers) so that the 
Stokes model is applicable. But it is also thought that the eddies that developed 
earlier (typically the primary eddy) are susceptible to the effectively high-Re flow 
since shear layers and the flow mechanisms near the reattachment points would 
induce sufficiently high velocity within eddies. Thus a t  asymptotically large 
Reynolds numbers the primary eddy will be primarily inviscid and the Moffatt 
description will only apply to the eddies very close to the corner. 

Our results locally exhibit a slight indication of viscous to inviscid transition of the 
primary eddy ; three consecutive figures (figure 6c, d and e) show that near the vortex 
centre the flow field tends to have uniform vorticity a t  higher Re. 

On the other hand, Leal (1973) also found that at  Re = 200, which was the highest 
Re used in his numerics, the primary eddy could be described more accurately by the 
Stokes model than by the inviscid one. It appears that Re = 200 is not high enough 
for the primary eddy to be described by the inviscid model. In order to obtain more 
reliable features we need to construct finer meshes in the numerics for higher- 
Reynolds-number flow. 

5.2. The nature of the potential flow field 
Regardless of the detailed nature of the recirculating flow, we can demonstrate an 
important and distinctive feature in the development of the potential flow. In the 
following we shall show numerically that the free-streamline model given in 53 is the 
right description of the potential-flow field in the limit Re -+ 00. Figure 7 shows 
streamlines obtained by the Navier-Stokes calculation compared to those of the free- 
streamline model in the potential region; the results of the free-streamline model 
correspond to the leading-edge breakaway. It is seen on the whole that as Re is 
increased the NavierStokes solutions tend to fit the free-streamline solutions. The 
discrepancy shown at lower Re in the downstream region is due to the effect of the 
boundary-layer displacement. The separating streamline (the streamline of y% = 0 in 
the Navier-Stokes solutions) is inclined to approach the breakaway streamline (the 
streamline of y% = 0 in the free-streamline solutions). A somewhat reversed trend in 
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FIQURE 7. Streamlines obtained by the free-streamline model with the breakaway point at  the 
leading edge (-) ; and those by the Navier-Stokes equations (----) for (a) Re = 200, (6) 800, and 
( c )  2800. 

the $ = 0.10 and 0.25 streamlines in the neighbourhood of the separating streamline 
can be tentatively explained by the shear-layer effect as well as their location. That 
is, when Re is increased the separating streamline recedes from the corner pushing the 
streamlines of $ > 0 outward, whilst the thickness of the shear layer is decreased 
resulting in the reverse effect, and thus if the latter effect is temporarily bigger than 
the former one it will lead to the result found. However, it can reasonably be 
conjectured that as Re is increased further the value of $ with the discrepancy would 
tend to zero. In an attempt to compare shapes of the $ = 0 streamlines, V, (see 83) 
is adjusted such that the free streamline best fits the separating streamline as shown 
in figure 8;  here, so = 0.08 and V, = 1.38. Also shown are the results of Chernyshenko 
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FIGURE 8. Streamlines obtained by the free-streamline model with the breakaway point so = 0.08 
(-), and those by the Navier-Stokes equations for Re = 2800 (----). Also shown is the 
breakaway streamline obtained by Chernyshenko (1984) based on Batchelor’s single-eddy model 
(---). 

(1984) via Batchelor’s model (single eddy in the recirculating region). It is seen that 
the free streamline perfectly fits the separating streamline except for the local region 
near the reattachment point. On the other hand, the line predicted by the use of the 
single-eddy model with a specific non-zero vorticity does not seem to be fitted by the 
separating streamline. It also appears from figure 9 of Moore, Saffman & Tanveer 
(1988) that the best fit is obtained when the vorticity is zero. 

It is natural a t  this stage to investigate how the constant pressure established 
along the shear layer would influence the recirculating region, including the solid 
surface. The surface pressure gradient is given by 

where s is the distance of a point on the surface measured from the leading edge of 
the plate and (a3Y/av3) (5, 0) is evaluated with the use of three consecutive Y values 
near the surface. Distributions of ap/as are shown in figure 9. Particular features 
observed at high Re are that the pressure gradient tends to zero over the recirculating 
region, and that regions near the separation and reattachment point have a tendency 
to have large local positive values - a similar but less distinctive trend was also 
observed by Leal (1973). 

The first feature mentioned above means that the pressure field in the recirculating 
region is dominated by that of the potential region. This forms a striking contrast to 
that of a circular cylinder (Fornberg 1986) or a sphere (Fornberg 1988) in a uniform 
stream in which the self-established inviscid flow field leads to an absolutely 
independent pressure field. 

The large positive pressure gradient near the reattachment point on the solid 
surface was favoured by many investigators (Smith & Duck 1977; Smith 1979; and 
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FIGURE 9. Distributions of the surface pressure gradient ap/as. 

Re 8, 

200 0.301 
400 0.237 
800 0.188 

1600 0.151 
2000 0.142 
2800 0.130 

TABLE 1. Position of the separation point s, obtained by the numerical solution of the 
Navier-Stokes equations 

Smith & Merkin 1982). Exact solutions of the Navier-Stokes equations for non- 
orthogonal stagnation-point flow presented by Tamada (1979) and Dorrepaal (1986) 
may describe the flow field in the neighbourhood of the reattachment point (refer to 
Peregrine 1981, 1985 for the symmetric boundary condition such as treated by Leal 
1973). But the question remains as to how such solutions can be matched with, for 
instance, the potential-flow solution upstream. 

The trend in the distribution of the pressure gradient near the separation point at  
high Re shown in figure 9 is qualitatively consistent with the requirement of the 
SychevSmith model for self-consistent boundary-layer separation. 

5.3. The position of the separation point 
Table 1 lists and figure 10 plots values of s, obtained from the full equations of 
motion and those from (18) where C = 1.631 is given by fitting data a t  Re = 2800. A 
remarkable point to note is that (18) fits the numerical results to within a 0.6% 
relative error (at Re = 800) over a wide range of Re. This clearly supports the 
Sychev-Smith model for separation from a smooth surface. It should be mentioned 
however that the magnitude of the leading-order term of (18) is 6.5-1 1 YO of the total. 
This contradicts the asymptotic theory which is the basis of (18). This is apparently 
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FIQURE 10. The position of the separation point: 0 ,  numerical solution of the Navier-Stokes 
equations; -, the asymptotic formula (18) with C = 1.631; ----, 8, = 0.28 predicted by Leal 
(1973). 

resolved by increasing Re; however, according to (18) Re = 3.2 x lo' is required for 
the first term to overtake the second one, which is far beyond the capability of 
presently existing computers. Another possibility may be to change the corner angle 
(presently 90') so that the plate is now attached on the apex of the wedge. 

On the other hand, Leal's (1973) prediction turned out not to be useful (figure 10). 
He obtained the limit of the separation position by applying the pressure gradient 
from the Navier-Stokes results at Re = 200 to the boundary-layer equations. The 
clear objection to his prediction is that the pressure gradient that he used in the 
boundary-layer calculation was asymptotically incorrect. 

6. Conclusions 
Based on the preceding text, we can draw the following conclusions. 
(i) Newton's method was successfully applied to the full Navier-Stokes equations 

for the present problem for Re up to 2800. 
(ii) The primary eddy has a slight tendency of transition from a viscous to an 

inviscid nature at high Re. There emerged a secondary eddy near the corner at Re = 
1000. It was conjectured that the corner intrinsically contains an infinite sequence of 
eddies and that the number of inviscid eddies would increase as Re is increased. 

(iii) In a global structure, there are two main regions: the recirculating region 
around the corner and the potential region elsewhere. It turned out that the 
streamlines in the potential region obtained from the full Navier-Stokes equations 
tend to fit those of the free-streamline model at  high Re. 

(iv) We found an asymptotic formula based on the Sychev-Smith model which 
predicted the separation position to within a 0.6% error for the range 100 <Re < 
2800. The present study thus renders further support to the Sychev-Smith model for 
self-consistent boundary-layer separation from a smooth surface. 
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